Abc3-Mediated Efflux of an Endogenous Digoxin-like Steroidal Glycoside by Magnaporthe oryzae Is Necessary for Host Invasion during Blast Disease

نویسندگان

  • Rajesh N. Patkar
  • Yang Kui Xue
  • Guanghou Shui
  • Markus R. Wenk
  • Naweed I. Naqvi
چکیده

Magnaporthe oryzae, which causes the devastating rice-blast disease, invades its host plants via a specialized infection structure called the appressorium. Previously, we showed that the ATP-Binding Cassette 3 transporter is necessary for appressorial function (host penetration) in M. oryzae. However, thus far, the molecular basis underlying impaired appressorial function in the abc3Δ remains elusive. We hypothesized that the abc3Δ appressoria accumulate excessive amounts of specific efflux substrate(s) of the Abc3 transporter in M. oryzae. We devised an innovative yeast-based strategy and identified Abc3 Transporter efflux Substrate (ATS) to be a digoxin-like endogenous steroidal glycoside that accumulates to inhibitory levels in M. oryzae abc3Δ appressoria. Exogenous ATS altered cell wall biogenesis and viability in wild-type Schizosaccharomyces pombe, but not in S. pombe expressing M. oryzae Abc3. We show that ATS associates with the Translation Elongation factor Tef2 in M. oryzae, and propose that ATS regulates ion homeostasis during pathogenesis. Excessive ATS accumulation, either intracellularly due to impaired efflux in the abc3Δ or when added exogenously to the wild type, renders M. oryzae nonpathogenic. Furthermore, we demonstrate that the host penetration defects in the abc3Δ are due to aberrant F-actin dynamics as a result of altered Tef2 function and/or ion homeostasis defects caused by excess accumulation of ATS therein. Rather surprisingly, excessive exogenous ATS or digoxin elicited the hypersensitive response in rice, even in the absence of the blast fungus. Lastly, reduced disease symptoms in the inoculated host plants in the presence of excessive digoxin suggest a potential use for such related steroidal glycosides in controlling rice-blast disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multidrug resistance transporter in Magnaporthe is required for host penetration and for survival during oxidative stress.

In prokaryotes and eukaryotes, multidrug resistance (MDR) transporters use energy-dependent efflux action to regulate the intracellular levels of antibiotic or xenobiotic compounds. Using mutational analysis of ABC3, we define an important role for such MDR-based efflux during the host penetration step of Magnaporthe grisea pathogenesis. Mutants lacking ABC3 were completely nonpathogenic but we...

متن کامل

A Multidrug Resistance Transporter in Magnaporthe Is Required for Host Penetration and for Survival during Oxidative Stress W

In prokaryotes and eukaryotes, multidrug resistance (MDR) transporters use energy-dependent efflux action to regulate the intracellular levels of antibiotic or xenobiotic compounds. Using mutational analysis of ABC3, we define an important role for such MDR-based efflux during the host penetration step of Magnaporthe grisea pathogenesis. Mutants lacking ABC3 were completely nonpathogenic but we...

متن کامل

Effector-mediated suppression of chitin-triggered immunity by magnaporthe oryzae is necessary for rice blast disease.

Plants use pattern recognition receptors to defend themselves from microbial pathogens. These receptors recognize pathogen-associated molecular patterns (PAMPs) and activate signaling pathways that lead to immunity. In rice (Oryza sativa), the chitin elicitor binding protein (CEBiP) recognizes chitin oligosaccharides released from the cell walls of fungal pathogens. Here, we show that the rice ...

متن کامل

Live‐cell imaging of rice cytological changes reveals the importance of host vacuole maintenance for biotrophic invasion by blast fungus, Magnaporthe oryzae

The rice blast fungus Magnaporthe oryzae grows inside living host cells. Cytological analyses by live-cell imaging have revealed characteristics of the biotrophic invasion, particularly the extrainvasive hyphal membrane (EIHM) originating from the host plasma membrane and a host membrane-rich structure, biotrophic interfacial complex (BIC). Here, we observed rice subcellular changes associated ...

متن کامل

Genome-wide Transcriptional Profiling of Appressorium Development by the Rice Blast Fungus Magnaporthe oryzae

The rice blast fungus Magnaporthe oryzae is one of the most significant pathogens affecting global food security. To cause rice blast disease the fungus elaborates a specialised infection structure called an appressorium. Here, we report genome wide transcriptional profile analysis of appressorium development using next generation sequencing (NGS). We performed both RNA-Seq and High-Throughput ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2012